Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Genomics ; 116(3): 110835, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521201

RESUMO

Pod length (PL) is one of the major traits determining pod size and yield of peanut. Discovering the quantitative trait loci (QTL) and identifying candidate genes associated with PL are essential for breeding high-yield peanut. In this study, quantitative trait loci sequencing (QTL-seq) was performed using the F2 population constructed by a short-pod variety Tifrunner (Tif) and a long-pod line Lps, and a 0.77 Mb genomic region on chromosome 07 was identified as the candidate region for PL. Then, the candidate region was narrowed to a 265.93 kb region by traditional QTL approach. RNA-seq analysis showed that there were four differentially expressed genes (DEGs) in the candidate region, among which Arahy.PF2L6F (AhCDC48) and Arahy.P4LK2T (AhTAA1) were speculated to be PL-related candidate genes. These results were informative for the elucidation of the underlying regulatory mechanism in peanut pod length and would facilitate further identification of valuable target genes.

3.
Small ; : e2311840, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470189

RESUMO

With the recently-booming hydrogen (H2 ) economy by green H2 as the energy carriers and the newly-emerged exhaled diagnosis by human organ-metabolized H2 as a biomarker, H2 sensing is simultaneously required with fast response, low detection limit, and tolerant stability against humidity, switching, and poisoning. Here, reliable H2 sensing has been developed by utilizing indium oxide nanocubes decorated with palladium and gold nanodots (Pd-Au NDs/In2 O3 NCBs), which have been synthesized by combined hydrothermal reaction, annealing, and chemical bath deposition. As-prepared Pd-Au NDs/In2 O3 NCBs are observed with surface-enriched NDs and nanopores. Beneficially, Pd-Au NDs/In2 O3 NCBs show 300 ppb-low detection limit, 5 s-fast response to 500 ppm H2 , 75%RH-high humidity tolerance, and 56 days-long stability at 280 °C. Further, Pd-Au NDs/In2 O3 NCBs show excellent stability against switching sensing response, and are tolerant to H2 S poisoning even being exposed to 10 ppm H2 S at 280 °C. Such excellent H2 sensing may be attributed to the synergistic effect of the boosted Pd-Au NDs' spillover effect and interfacial electron transfer, increased adsorption sites over the porous NCBs' surface, and utilized Pd NDs' affinity with H2 and H2 S. Practically, Pd-Au NDs/In2 O3 NCBs are integrated into the H2 sensing device, which can reliably communicate with a smartphone.

4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542283

RESUMO

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Assuntos
Brassica napus , Brassica rapa , Ácidos Erúcicos , Germinação/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Secas , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica
5.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542340

RESUMO

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Assuntos
Deficiência de Potássio , Plântula , Plântula/genética , Plântula/metabolismo , Zea mays/metabolismo , Deficiência de Potássio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Nutr ; 11: 1341527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352706

RESUMO

Background: Human milk contains a complex mixture of triacylglycerols (TAG), making it challenging to recreate using common ingredients. Objective: The study aimed to develop an innovative fermentation technique to produce essential human milk TAG, effectively tackling a significant hurdle in infant nutrition. Method: An in-depth analysis of the literature has been conducted to identify the specific TAG to be targeted. We used a microalgal oil production platform and a two-step procedure to modify its fatty acid and TAG composition. The palmitic acid (16:0) content has been increased by classical strain improvement techniques, followed by a step involving the expression of a lysophosphatidic acid acyltransferase (LPAAT) sequence capable of esterifying 16:0 specifically at the internal position (sn-2 palmitate) of TAG. Once the strain was stabilized, the fermentation was scaled up in a 50-L reactor to yield several kilograms of biomass. Subsequently, the oil was extracted and refined using standard oil processing conditions. Liquid chromatography-mass spectrometry was employed to monitor the TAG profile and the region specificity of 16:0 at the internal position (sn-2 palmitate) of TAG. Results: The initial strain had a 16:0 level of 25% of total fatty acids, which was increased to 30% by classical strain improvement. Simultaneously, the oleic acid level decreased from 61% to 57% of total fatty acids. Upon expression of an exogenous LPAAT gene, the level of the 16:0 esterified in the internal position of the TAG (sn-2 palmitate) increased by a factor of 10, to reach 73% of total palmitic acid. Consequently, the concentration of oleic acid in the internal position decreased from 81% to 22% of total fatty acids, with TAG analysis confirming that the primary TAG species in the oil was 1,3-dioleoyl-2-palmitoyl-glycerol (OPO). The 50-L-scale fermentation trial confirmed the strain's ability to produce oil with a yield of >150 g of oil per liter of fermentation broth in a timeframe of 5 days, rendering the process scalable for larger-scale industrialization. Conclusion: We have demonstrated the feasibility of producing a suitable TAG composition that can be effectively integrated into the formulations of infant nutrition in combination with other fats and oils to meet the infant feeding requirements.

7.
Dalton Trans ; 53(2): 699-705, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078541

RESUMO

The creation of magnetically switchable materials that concurrently incorporate spin crossover (SCO) and a structural phase transition (SPT) presents a significant challenge in materials science. In this study, we prepared four structurally related cobalt(II)-based SCO compounds: two one-dimensional (1D) chains of {[(enbzp)Co(µ-L)](ClO4)2·sol}n (L = bpee, sol = 2MeOH·H2O, 1; L = bpea, sol = none, 2; enbzp = N,N'-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine); bpee = 1,2-bis(4-pyridyl)ethylene; and bpea = 1,2-bis(4-pyridyl)ethane) and their discrete segments, [{(enbzp)Co}2(µ-L)](ClO4)4·2MeOH (L = bpee, 3; L = bpea, 4). In all of these complexes, each Co(II) center is equatorially chelated by the planar tetradentate ligand enbzp and connected to a chain or dinuclear structure through bpee or bpea ligands along its axial direction. All of the complexes, including their desolvated phases, displayed overall incomplete and gradual SCO properties. Interestingly, the desolvated phase of 1 exhibited an additional non-spin magnetic transition characterized by wide room-temperature hysteresis (>40 K), which was reversible and rate-dependent, showcasing the synergy between SCO and SPT manifested through slow kinetics. We discuss the possible reasons for the distinct features and our findings demonstrate that the combination of a rigid polymeric framework with flexible substituents holds promise for achieving synergy between SCO and SPT.

8.
J Am Geriatr Soc ; 72(1): 69-79, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775961

RESUMO

BACKGROUND: Healthcare systems are increasingly turning to data-driven approaches, such as clustering techniques, to inform interventions for medically complex older adults. However, patients seeking care in multiple healthcare systems may have missing diagnoses across systems, leading to misclassification of resulting groups. We evaluated the impact of multi-system use on the accuracy and composition of multimorbidity groups among older adults in the Veterans Health Administration (VA). METHODS: Eligible patients were VA primary care users aged ≥65 years and in the top decile of predicted 1-year hospitalization risk in 2018 (n = 558,864). Diagnoses of 26 chronic conditions were coded using a 24-month lookback period and input into latent class analysis (LCA) models. In a random 10% sample (n = 56,008), we compared the resulting model fit, class profiles, and patient assignments from models using only VA system data versus VA with Medicare data. RESULTS: LCA identified six patient comorbidity groups using VA system data. We labeled groups based on diagnoses with higher within-group prevalence relative to the average: Substance Use Disorders (7% of patients), Mental Health (15%), Heart Disease (22%), Diabetes (16%), Tumor (14%), and High Complexity (10%). VA with Medicare data showed improved model fit and assigned more patients with high accuracy. Over 70% of patients assigned to the Substance, Mental Health, High Complexity, and Tumor groups using VA data were assigned to the same group in VA with Medicare data. However, 41.9% of the Heart Disease group and 14.7% of the Diabetes group were reassigned to a new group characterized by multiple cardiometabolic conditions. CONCLUSIONS: The addition of Medicare data to VA data for older high-risk adults improved clustering model accuracy and altered the clinical profiles of groups. Accessing or accounting for multi-system data is key to the success of interventions based on empiric grouping in populations with dual-system use.


Assuntos
Diabetes Mellitus , Cardiopatias , Neoplasias , Veteranos , Humanos , Idoso , Estados Unidos/epidemiologia , Medicare , Multimorbidade , United States Department of Veterans Affairs , Estudos Retrospectivos
9.
Cancer Lett ; 580: 216483, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972702

RESUMO

Cellular plasticity and immune escape are synergistic drivers of tumor colonization in metastatic organs. Activation of protease-activated receptor 2 (PAR2) signaling promotes metastasis of colorectal carcinoma (CRC). The role of PAR2 in regulating the immune microenvironment and cancer progression remains unclear. We demonstrated that the regulation of liver metastasis by PAR2 requires a competent immune system. PAR2 knockdown enhanced liver infiltration of activated CD8+ T cells prior to metastatic foci formation in an interferon receptor-dependent manner. PAR2 depletion increased interferon (IFN)-ß production via the cGAS-STING and RIG-1 pathways. PAR2 inhibition increased mitochondrial permeability and cytosolic accumulation of mitochondrial DNA, which was reversed by Bcl-xL expression. Strikingly, shRNA against PAR2 with an immune checkpoint blocker (ICB) acted synergistically to suppress liver metastasis. Analysis of single-cell sequence data and 24 paired samples confirmed the regulatory effect of PAR2 on the metastatic immune environment in human CRC. Therefore, PAR2 signaling is involved in stabilizing the mitochondrial membrane and regulating the immune microenvironment through IFN-ß during liver metastasis in CRC. The synergistic effect of the PAR2 inhibitor and ICB provides a potential therapeutic strategy for metastatic CRC treatment.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/patologia , Interferon beta , Neoplasias Hepáticas/genética , Poro de Transição de Permeabilidade Mitocondrial , Receptor PAR-2/genética , Microambiente Tumoral/genética
10.
Front Plant Sci ; 14: 1269200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078104

RESUMO

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

11.
Infect Drug Resist ; 16: 7775-7795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148772

RESUMO

Introduction: This study compared microbial compositions of midstream and catheter urine specimens from patients with suspected complicated urinary tract infections to determine if emerging and fastidious uropathogens are infecting the bladder or are contaminants. Methods: Urine was collected by in-and-out catheter (n = 1000) or midstream voiding (n = 1000) from 2000 adult patients (≥60 years of age) at 17 DispatchHealth sites across 11 states. The two groups were matched by age (mean 81 years), sex (62.1% female, 37.9% male), and ICD-10-CM codes. Microbial detection was performed with multiplex polymerase chain reaction (M-PCR) with a threshold for "positive detection" ≥ 10,000 cells/mL for bacteria or any detection for yeast. Results were divided by sex. Results: In females, 28 of 30 microorganisms/groups were found by both collection methods, while in males 26 of 30 were found by both. There were significant overlaps in the detection and densities of classical uropathogens including Escherichia coli, Enterococcus faecalis, and Klebsiella pneumoniae, as well as emerging uropathogens including Actinotignum schaalii and Aerococcus urinae. In females, detection rates were slightly higher in midstream voided compared to catheter-collected (p = 0.0005) urine samples, while males showed the opposite trend (p < 0.0001). More polymicrobial infections were detected in midstream voided compared to catheter-collected samples (64.4% vs 45.7%, p < 0.0001) in females but the opposite in males (35.6% vs 47.0%, p = 0.002). Discussion: In-and-out catheter-collected and midstream voided urine specimens shared significant similarities in microbial detections by M-PCR, with some differences found for a small subset of organisms and between sexes. Conclusion: Non-invasive midstream voided collection of urine specimens for microbial detection and identification in cases of presumed UTI does not result in significantly more contamination compared to in-and-out catheter-collected specimens. Additionally, organisms long regarded as contaminants should be reconsidered as potential uropathogens.

12.
Biomark Med ; 17(16): 667-677, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934042

RESUMO

Aim: Studies have indicated that circRNAs have diagnostic value for coronary heart disease (CHD), but the efficacy varies greatly; therefore, a meta-analysis was conducted to assess the diagnostic value of circRNAs in CHD. Materials & methods: 16 studies with 3962 subjects (2239 cases and 1723 controls) were included by searching PubMed, Web of Science and MEDLINE. The pooled sensitivity and specificity, summary receiver operating characteristic and area under the curve, positive likelihood ratio and negative likelihood ratio were calculated. Results: The pooled area under the curve of circRNAs for the diagnosis of CHD was 0.80 (sensitivity and specificity were 0.77 and 0.68, respectively), and more indexes were calculated. Conclusion: circRNAs may be good biomarkers for diagnosing CHD.


Assuntos
Biomarcadores Tumorais , RNA Circular , Humanos , RNA Circular/genética , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Curva ROC
13.
Huan Jing Ke Xue ; 44(11): 5986-5996, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973083

RESUMO

The characteristics and main factors of causes of haze in Zhoukou in January 2022 were analyzed. Six air pollutants, water-soluble ions, elements, OC, EC, and other parameters in fine particulate matter were monitored and analyzed using a set of online high-time-resolution instruments in an urban area. The results showed that the secondary inorganic aerosols(SNA), carbonaceous aerosols(CA, including organic carbon OC and inorganic carbon EC), and reconstructed crustal materials(CM, such as Al2O3, SiO2, CaO, and Fe2O3, etc.) were the three main components, accounting for 61.3%, 24.3%, and 9.72% in PM2.5, respectively. The concentrations of SNA, CA, CM, and SOA were increased, accompanied with higher AQI. The sulfur oxidation rate(SOR) and nitrogen oxidation rate(NOR) in January were 0.53 and 0.46, respectively. The growth rates[µg·(m3·h)] of sulfate and nitrate were 0.027(-5.89-9.47, range) and 0.051(-23.1-12.4), respectively. During the haze period, the growth rates of sulfate and nitrate were 0.13 µg·(m3·h)-1and 0.24 µg·(m3·h)-1, which were 4.8 and 4.7 times higher than the average value of January, respectively. Although the sulfur oxidation rate was greater than the nitrogen oxidation rate, the growth rate of nitrate was approximately 1.8 times that of sulfate owing to the difference in the concentration of gaseous precursors and the influence of relative humidity. The growth rates of nitrate in SNA were significantly higher than those of sulfate on heavily polluted days. The values of SOR, NOR, and concentrations of SNA and SOA during higher AQI and humidity periods were higher than those in lower AQI and humidity periods. The Ox(NO2+O3) decreased with the increase in relative humidity. The SOA was higher at nighttime, increasing faster with the humidity than that in daytime. Under the situation of lower temperature, higher humidity, and lower wind speed, the emission of gaseous precursors of SNA requires further attention in Zhoukou in winter. Advanced control strategies of emissions of SO2 and NO2, such as mobile sources and coal-burning sources, could reduce the peak of haze in winter efficiently.

14.
Diagnostics (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835804

RESUMO

This study compared rates of empirical-therapy use and negative patient outcomes between complicated and recurrent urinary tract infection (r/cUTI) cases diagnosed with a multiplex polymerase chain reaction or pooled antibiotic susceptibility testing (M-PCR/P-AST) vs. standard urine culture (SUC). Subjects were 577 symptomatic adults (n = 207 males and n = 370 females) presenting to urology/urogynecology clinics between 03/30/2022 and 05/24/2023. Treatment and outcomes were recorded by the clinician and patient surveys. The M-PCR/P-AST (n = 252) and SUC (n = 146) arms were compared after patient matching for confounding factors. The chi-square and Fisher's exact tests were used to analyze demographics and clinical outcomes between study arms. Reduced empirical-treatment use (28.7% vs. 66.7%), lower composite negative events (34.5% vs. 46.6%, p = 0.018), and fewer individual negative outcomes of UTI-related medical provider visits and UTI-related visits for hospitalization/an urgent care center/an emergency room (p < 0.05) were observed in the M-PCR/P-AST arm compared with the SUC arm. A reduction in UTI symptom recurrence in patients ≥ 60 years old was observed in the M-PCR/P-AST arm (p < 0.05). Study results indicate that use of the M-PCR/P-AST test reduces empirical antibiotic treatment and negative patient outcomes in r/cUTI cases.

15.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571068

RESUMO

The novel conductive polyvinylidene fluoride (PVDF) fibrous membrane with high conductivity and sensitivity was successfully prepared via electrostatic spinning and efficient silver reduction technology. Based on the selective dissolution of porogen of polyvinylpyrrolidone (PVP), the porous PVDF fibrous membrane with excellent adsorbability and mechanical strength was obtained, providing a structure base for the preparation of conductive PVDF fibrous membrane with silver nanoparticles (AgNPs-PVDF). The Ag+ in the AgNO3 mixed solution with PVP was absorbed and maintained in the inner parts and surface of the porous structure. After the reducing action of ascorbic acid-mixed solution with PVP, silver nanoparticles were obtained tightly in an original porous PVDF fibrous membrane, realizing the maximum conductivity of 2500 S/m. With combined excellent conductivity and mechanical strength, the AgNPs-PVDF fibrous membrane effectively and sensitively detected strain signals of throat vocalization, elbow, wrist, finger, and knee (gauge factor of 23). The electrospun conductive AgNPs-PVDF combined the characteristics of low resistance, high mechanical strength, and soft breathability, which provided a new and effective preparation method of conductive fibers for practical application in wearable devices.

16.
BMC Plant Biol ; 23(1): 371, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491223

RESUMO

BACKGROUND: Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS: In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS: It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Reguladores de Crescimento de Plantas , Arachis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
17.
Diagn Microbiol Infect Dis ; 107(2): 116015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499607

RESUMO

We evaluated whether multiplex polymerase chain reaction (M-PCR) detects viable micro-organisms by comparing micro-organism identification with standard urine culture (SUC) and expanded quantitative urine culture (EQUC). Of the 395 organisms detected by M-PCR, EQUC detected 89.1% (p = 0.10), whereas SUC detected 27.3% (p < 0.0001 vs. M-PCR and p < 0.0001 vs EQUC). M-PCR identified 260 nonfastidious bacteria, EQUC detected 96.5% (p = 0.68), whereas SUC detected 41.5% (p < 0.0001). Common nonfastidious bacteria missed by SUC included Escherichia coli (72.5% detected), Klebsiella pneumoniae (66.7% detected), Enterococcus faecalis (34.6% detected) and Enterococcus faecium (0% detected). M-PCR identified 135 fastidious bacteria and EQUC 101 (74.8%, p = 0.01), whereas SUC failed to detect any (0%, p < 0.0001). Clinical samples evaluated using EQUC and M-PCR yielded very similar findings, indicating that most microbes identified by M-PCR represented viable organisms, and validating M-PCR as a diagnostic tool for UTIs.


Assuntos
Enterococcus faecium , Infecções Urinárias , Humanos , Reação em Cadeia da Polimerase Multiplex , Urinálise , Infecções Urinárias/microbiologia , Escherichia coli , Enterococcus faecium/genética , Antibacterianos/farmacologia
18.
Front Plant Sci ; 14: 1135580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521911

RESUMO

Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.

19.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37500537

RESUMO

Standard urine culture (SUC) is the current standard method for confirmation of a urinary tract infection (UTI). SUC identifies microorganisms in urine samples and semi-quantifies these as colony-forming units (CFUs) ml-1. In contrast, quantitative multiplex polymerase chain reaction (q-MPCR) is a culture-independent assay in which the microbes are quantified by targeting genomic sequences and reported as cells ml-1, calculated from copies ml-1. Using serial dilutions within the 104-105 cells ml-1 range, the usual reporting range of SUC, this study compared the quantification results based on SUC and q-MPCR for four uropathogens with the control hemocytometer counts. The results revealed a linear relationship and a 1:1 correlation between the q-MPCR and SUC results. Additional q-MPCR quantification of 36 uropathogenic non-fastidious and fastidious bacteria and yeast indicated a reproducible linear correlation in a 1:1 manner with the control counts over a range of cell densities (103-106 cells ml-1). The results confirm that the quantifications by q-MPCR in cells ml-1 and by SUC in CFUs ml-1 are comparable and answer to the lingering question of how the results of these two methods correlate. Moreover, q-MPCR provided accurate quantification of various microorganisms over wider cell density ranges without the time required for microbial growth.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Infecções Urinárias , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Urinálise/métodos , Bactérias/genética
20.
EMBO Rep ; 24(9): e56230, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37489617

RESUMO

Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Antineoplásicos/uso terapêutico , Dano ao DNA , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína BRCA1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA